Rotating Boussinesq and Quasigeostrophic Equations

Theory and Numerical Analysis

Regular price
Sale price
Regular price
Sold out
Unit price
Shipping calculated at checkout.


The author elucidates in a concrete way dynamical challenges concerning approximate inertial manifolds (AIMS), i.e., globally invariant, exponentially attracting, finite-dimensional smooth manifolds, for nonlinear dynamical systems on Hilbert spaces. The goal of this theory is to prove the basic theorem of approximation dynamics, wherein it is shown that there is a fundamental connection between the order of the approximating manifold and the well-posedness and long-time dynamics of the rotating Boussinesq and quasigeostrophic equations. The author discusses recent progress in analytical and numerical methods covering form initial and boundary value problems, long-time dynamics and stability issues. He presents the most recent advances concerning the questions of global regularity of solutions to the 3D Navier-Stokes and Euler equations of incompressible fluids. Furthermore, he also presents recent global regularity (and finite time blow-up) results concerning the 3D quasigeostrophic and rotating Boussinesq equations describing the motion of a viscous incompressible rotating stratified fluid flow.


Maleafisha Joseph Pekwa Stephen Tladi


The author attended Clark University where he earned his Bachelor of Arts (BA), Summa Cum Laude, Phi Beta Kappa, with Highest Honors in Mathematics. He received his Master of Science (MSc), Magna Cum Laude, Sigma Xi from Brown University in Applied Mathematics and Engineering. He was conferred his PhD Degree from the University of Cape Town.

Number of Pages:


Book language:


Published On:




Publishing House:

LAP LAMBERT Academic Publishing


Wave-Current Interactions, Atmospheric and Oceanic Dynamics, Dynamical Systems and Turbulence, Lagrangian and Eulerian Analysis, Rotating Stratified Fluid Flow, Geophysical Fluid Flow, Rotating Boussinesq and Quasigeostrophic Equations, Existence and Uniqueness, Lyapunov and Energy Stability, Well-Posedness and Long-Time Dynamics, Approximate Inertial Manifolds (AIMS)

Product category: